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Abstract

Frames of finite dimensional Hilbert spaces have recently been of great interest in applications
to modern communication networks transport packets. In this note, continuous and discrete frames,
living on fractal sets, of both finite and infinite dimensional separable abstract Hilbert spaces are
found. In particular, we find discrete frames, robust to erasures, of finite dimensional Hilbert spaces
using iterated function systems.
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1. Introduction

Hilbert spaces are the underlying mathematical structure of many areas of physical appli-
cations, predominantly, quantum theories and signal analysis. Signal analysis is concerned
with decomposing and reconstructing vectors of a Hilbert space using simpler vectors with-
out loosing essential information. What are these simpler vectors and how efficient are they?
Since computers can only work with a finite set of data points, these essential components
have to be collected with extra care. This practice may not be successful if we decompose
the signal in terms of an orthonormal basis of the Hilbert space of the problem because
in such a case the decomposition will be unique. The drawbacks of an orthonormal basis
is argued well in[8,9]. In order to overcome this difficulty, practitioners looked for an al-
ternative. As a result, by relaxing the orthogonality, overcomplete families of vectors were
considered, such families are called frames. A specific type of frame is called wavelet[1,13].
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The theory of frames was initiated by Duffin and Schaeffer[10] in 1952 in the context of
nonharmonic Fourier series. A significant role of frames in signal processing was pioneered
by Daubechies et al.[8], and a landmark development was given by Daubechies[9]. Frames
and their applications are very active areas of current research[4,6]. Frames have been used
in signal processing because of their resilience to additive noise, their numerical stability
of reconstruction[9], and greater freedom to capture signal characteristics[6]. For exam-
ple, [11] uses the redundancy of a frame to mitigate the effect of losses in packet-based
communication systems. Further, many of the applications of frames involve modeling and
constructing infinite frames for infinite dimensional Hilbert spaces[4].

The theory of iterated function systems has found important applications in the area of
computer graphics[3], and in modeling interference effects in quantum mechanics[5].
Recently, iterated function systems has been used to provide a new method of computing
entropy for some classical and quantum dynamical systems[14]. The primary aim of this
note is to find a link between two important theories, frames and iterated function systems
and to develop their applications. In[15] we used iterations of rational functions to obtain
frames parameterized by the elements of a Julia set. In this note, we use iterated function
systems to obtain continuous and discrete frames, living on fractal sets, of both finite and
infinite dimensional separable abstract Hilbert spaces.

In Section 2we present definitions and the set up of the problem. InSection 3we discuss
continuous and discrete frames on infinite dimensional Hilbert spaces using iterations.
Section 4deals with a continuous frame on infinite dimensional Hilbert space, where we use
probability functions together with the iterations to obtain frames.Sections 2–4use fractals
which are significantly away from the origin to obtain frames. Using a distance function,
in Section 5, we obtain frames on fractals which contain the origin in it. InSection 6we
discuss continuous and discrete frames on finite dimensional Hilbert spaces. InSection 7,
following the ideas developed in[6,11,12], we use the frames of this paper in applications
to modern communication networks transport packets and compare our results to the results
of [6,12].

2. Preliminaries and set up

We start with a general definition of a frame[1,2,7,13].

Definition 2.1. Let (X,µ) be a locally compact measure space andH be an abstract sepa-
rable Hilbert space. The family of vectors

S = {ηx|x ∈ X} ⊂ H (2.1)

is said to form a frame inH if the operator

F =
∫
X

|ηx〉〈ηx|dµ (2.2)

satisfies

A‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B‖φ‖2 for all φ ∈ H, (2.3)
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whereA andB are positive constants. IfA = B the setS is called a tight frame. If the
operatorF = I, the identity operator ofH, then the setS is said to give a resolution of the
identity. Note that ifX = J is a discrete set andµ is a counting measure, the operator(2.2)
takes the form

F =
∑
j∈J
|ηj〉〈ηj|. (2.4)

In the case whereX is partly discrete, the corresponding part ofµ could in general be a
weighted counting measure and(2.2) takes the form

F =
∑
j∈J′

∫
X′
|ηx,j〉〈ηx,j|dν(x), (2.5)

whereX = X′ ∪ J′, X′ is the continuous part with measureν andJ′ the discrete part with
a counting measure on it.

We introduce some frame terminology[6]:

(i) Equal norm frame:‖ηx‖ = ‖ηy‖ ∀x, y ∈ X.
(ii) Unit norm frame:‖ηx‖ = 1 ∀x ∈ X.

(iii) Parseval tight frame:A = B = 1.

The quantity

w = B − A
B + A (2.6)

is called the width of the frame. The width of a frame measures the tightness of the frame.

Now, we present the set up of the problem.
Let(X, d)be a complete metric space andτ1, τ2, . . . , τK be a collection of transformations

fromX to itself. We assume thatτ1, τ2, . . . , τK are contractions, i.e., fork = 1, ... , K

max
k
d(τk(x), τk(y)) ≤ α · d(x, y),

whereα < 1. An iterated function system, IFS for short, with state dependent probabil-
ities, T = {τ1, . . . , τK;p1(x), . . . , pK(x)} is defined by choosingτk(x) with probability
pk(x), pk(x) > 0,

∑K
k=1pk(x) = 1. The iterates ofT are given by

Tm(x) = τkm ◦ τkm−1 ◦ · · · ◦ τk1(x) (2.7)

with probability

pkm(τkm−1 ◦ · · · ◦ τk1(x)) · pkm−1(τkm−2 ◦ · · · ◦ τk1(x)) · · ·pk1(x).

Let (H(X), h(d)) denote the space of nonempty compact subsets corresponding to(X, d)

with Hausdorff metrich(d) [3]. T : H(X)→ H(X) is given by

T(B) = ∪Kk=1τk(B)

for all B ∈ H(X). The Banach contraction theorem furnishes an attractor to the dynamical
system(X, T) [3]. In the special case whenX = R2, the attractor of an IFS is called a fractal
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[3]. The presence of the probabilities allows more weight on some transformations over the
others. Thus, the fractal may have parts more “dense” than the remaining parts.

Since we are onR2, the transformations are two component objects, i.e.,

Tm(x) = (fm(x), gm(x)).
From now on we interpretTm(x) as the complex numberfm(x)+ igm(x) and denote it by
the same symbol,Tm(x). We take a Hilbert spaceH over complex numbers, thus the object
Tm(x)φ is well-defined inH for all φ ∈ H.

Let A denote the attractor of the IFS andB the Borel subsets of(A, d). Let µ be a
probability measure onB such that∫

A

dµ(x) = 1. (2.8)

In particular, one can use the probabilities to construct a measure on the attractor. For
example, if the probabilities are constants, the measure can be constructed in the following
way:µ(A) = 1, µ(τk(A)) = pk, µ(τl ◦ τk(A)) = pl · pk, and so on.

3. Frames on fractals using iterations

In this section, we assume thatX = R2 andd = | · | is the Euclidean metric. We also
assume that there exist a neighborhood,N0, of the origin such that

N0 ∩ A = ∅. (3.1)

Remark 3.1. Observe that ifT satisfies(3.1), we have

A ≤ |Tm(x)| ≤ B for all m = 0,1,2 . . . and for all x ∈ A, (3.2)

whereA andB are positive constants. The contraction property of the IFS, which grantees
the existence of the attractor, is essential in the proof of our theorems. Infact, the contraction
factor is the upper bound of the frame operator in study.

In the context of signal processing the interesting Hilbert space would beH = L2(A, dµ).
The elements of this Hilbert space can be interpreted as finite energy signals while the
measure space(A, dµ) serve as the space of parameters. Since the following construction
can be carried out with any separable Hilbert space, we takeH to be an abstract separable
Hilbert space and{φm}∞m=0 is an orthonormal basis of it. IfH is a finite dimensional Hilbert
space then the orthonormal basis takes the form{φm}Nm=1, whereN is the dimension of
the Hilbert space. Frames on finite dimensional Hilbert spaces are of practical interest in
several directions, for example see[4,6,11,12].

In the following theorem we present a general construction of a continuous frame.

Theorem 3.2. For x ∈ A let

φx,m = Tm(x)φm, (3.3)
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andS = {φx,m|x ∈ A,m = 0,1,2, . . . }. If condition(3.1) is satisfied, the set S constitute
a frame inH. That is, the operator

F =
∞∑
m=0

∫
A

|φx,m〉〈φx,m|dµ(x)

satisfies

C‖φ‖2 ≤ 〈φ|Fφ〉 ≤ D‖φ‖2

for all φ ∈ H and some positive constants C and D.

Proof. We have

〈φ|Fφ〉=
∞∑
m=0

∫
A

〈φ|φx,m〉〈φx,m|φ〉dµ(x)=
∞∑
m=0

∫
A

〈φ|Tm(x)φm〉〈Tm(x)φm|φ〉dµ(x),

(3.4)

〈φ|Fφ〉 =
∞∑
m=0

∫
A

|Tm(x)|2〈φ|φm〉〈φm|φ〉dµ(x) =
∞∑
m=0

∫
A

|Tm(x)|2|〈φ|φm〉|2 dµ(x).

(3.5)

By (2.8), (3.2) and (3.4)we obtain:

〈φ|Fφ〉 ≤ B2
∞∑
m=0

|〈φ|φm〉|2 = B2‖φ‖2

and

〈φ|Fφ〉 ≥ A2
∞∑
m=0

|〈φ|φm〉|2 = A2‖φ‖2.

This ends the proof. �

Remark 3.3. In the terminology of[2], the frame constructed inTheorem 3.2can be named
as acontinuous frame of infinite rank.

In the context of signal processing, the selection(A,dµ, {ψz,m}) reflects the selection of
a part of the signal which we intend to isolate and analyze[1].

3.1. Discrete frame

In practice one has to deal with a discrete set of vectors, in fact, with a finite set of vectors.
The discretization of a continuous process is often difficult and ill-posed[1,13]. Here we
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propose a method for discretizing the above constructed frame by choosing a finite set of
points in the attractor.

Theorem 3.4. For a fixed integerN ∈ N let xi ∈ A and

φxi,m = Tm(xi)φm, (3.6)

andSN = {φxi,m|xi ∈ A, i = 1,2, . . . , N;m = 0,1,2, . . . }. If condition(3.1) is satisfied,
the set S constitutes a frame inH. That is, the operator

F =
N∑
i=1

∞∑
m=0

|φxi,m〉〈φxi,m|

satisfies

C‖φ‖2 ≤ 〈φ|Fφ〉 ≤ D‖φ‖2

for all φ ∈ H and some positive constants C and D.

Proof. We have

〈φ|Fφ〉 =
N∑
i=1

∞∑
m=0

〈φ|φxi,m〉〈φxi,m|φ〉 =
N∑
i=1

∞∑
m=0

〈φ|Tm(xi)φm〉〈Tm(xi)φm|φ〉

=
N∑
i=1

∞∑
m=0

|Tm(xi)|2〈φ|φm〉〈φm|φ〉 =
N∑
i=1

∞∑
m=0

|Tm(xi)|2|〈φ|φm〉|2. (3.7)

By (3.2) and (3.7)we obtain:

〈φ|Fφ〉 ≤ NB2
∞∑
m=0

|〈φ|φm〉|2 = NB2‖φ‖2

and

〈φ|Fφ〉 ≥ NA2
∞∑
m=0

|〈φ|φm〉|2 = NA2‖φ‖2.

This ends the proof. �

We can also obtain a discrete frame with a discrete infinite set of points. We present it
in the following theorem. It may be interesting to notice that the cardinality of the frame is
the same as the cardinality of the orthonormal basis.

Theorem 3.5. Letxm ∈ A be a discrete set of points and

φxm,m = Tm(xm)φm, (3.8)
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andS = {φxm,m|m = 0,1,2, . . . }. If condition(3.1)is satisfied, the set S constitute a frame
in H. That is, the operator

F =
∞∑
m=0

|φxm,m〉〈φxm,m|

satisfies

C‖φ‖2 ≤ 〈φ|Fφ〉 ≤ D‖φ‖2

for all φ ∈ H and some positive constants C and D.

Proof. Proof is similar to the proof ofTheorem 3.4. �

Corollary 3.6. For eachx ∈ A the setSx = {φx,m|m = 0,1,2, . . . } is an orthogonal
family inH. Further it is a frame.

Remark 3.7. In the case where one intend to use a different label for thexm of (3.8), the
result ofTheorem 3.5fail to hold. That is

S = {φxj,m|j = 1,2, . . . ;m = 0,1,2, . . . }
is not a frame because in this case the numberN of Theorem 3.4is infinity and thereby the
frame bounds become infinite.

Often discretization of a continuous frame changes the frame width[13]. In our case, by
Theorems 3.2 and 3.4we can see that through the discretization process the frame width
remains the same while the frame bounds change.

Now, we present an example which satisfies assumption(3.1)and henceTheorems 3.2,
3.4 and 3.5.

Example 3.8. Let T = {τ1, τ2, τ3}, x = (t1, t2) ∈ R2, whereτ1 = ((1/2)t1, (1/2)t2) +
(1/2,0), τ2 = ((1/2)t1, (1/2)t2) + (1,0) and τ3 = ((1/2)t1, (1/2)t2) + (3/4,

√
3/4).

Notice thatT is a contraction with a contractivity factor 1/2. The attractor ofT is shown in
Fig. 1with the origin outside the attractor. For this example, the vertices of the triangle are
(1,0), (2,0) and(3/2,

√
3/2). Thus,T satisfies condition(3.1).

4. Labeling with probability functions

In this section, we present another class of continuous frame using the probability func-
tions together with the iterations. These probability functions bring additional weight on the
frame vectors, and can be used to control the norm of the vectors. We use the assumptions
of Section 3. Consider the set of vectors

S = {ψm,x,k : x ∈ A,m = 0,1,2, . . . ; k = 1, . . . , K},
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Fig. 1. Sierpinkski triangle, the attractor of the IFS inExamples 3.8 and 5.4.

where

ψm,x,k = (pkm(τkm−1 ◦ · · · ◦ τk1(x))pkm−1

× (τkm−2 ◦ · · · ◦ τk1(x)) . . . pk1(x))
1/2 · Tm(x)φm. (4.1)

Theorem 4.1. The set of vectorsS is a frame inH, that is the operator

F =
K∑
k=1

∞∑
m=0

∫
A

|ψm,x,k〉〈ψm,x,k|dµ(x) (4.2)

satisfies the frame condition(2.3).

Proof. We have

〈φ|Fφ〉 =
K∑
k=1

∞∑
m=0

∫
A

〈φ|ψm,x,k〉〈ψm,x,k|φ〉dµ(x)

=
K∑
k=1

∞∑
m=0

∫
A

〈φ|(pkm(τkm−1 ◦ · · · ◦ τk1(x)) . . . pk1(x))
1/2 ·

Tm(x)φm〉〈(pkm(τkm−1 ◦ · · · ◦ τk1(x)) . . . pk1(x))
1/2 · Tm(x)φm|φ〉dµ(x)
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=
K∑
k=1

∞∑
m=0

∫
A

pkm(τkm−1 ◦ · · · ◦ τk1(x)) . . . pk1(x) ·

|Tm(x)|2〈φ|φm〉〈φm|φ〉dµ(x)

=
K∑
k=1

∞∑
m=0

∫
A

pkm(τkm−1 ◦ · · · ◦ τk1(x)) . . . pk1(x) · |Tm(x)|2|〈φ|φm〉|2 dµ(x).

(4.3)

Therefore,

〈φ|Fφ〉 ≤ B2
∞∑
m=0

K∑
k=1

∫
A

pkm(τkm−1 ◦ · · · ◦ τk1(x)) . . . pk1(x)|〈φ|φm〉|2 dµ(x)

=B2
∞∑
m=0

∫
A

|〈φ|φm〉|2 dµ(x) = B2||φ||2, (4.4)

on the other hand

〈φ|Fφ〉 ≥A2
∞∑
m=0

K∑
k=1

∫
A

pkm(τkm−1 ◦ · · · ◦ τk1(x)) . . . pk1(x)|〈φ|φm〉|2 dµ(x)

=A2
∞∑
m=0

∫
A

|〈φ|φm〉|2 dµ(x) = A2||φ||2. (4.5)

The proof follows from the inequalities(4.4) and (4.5). �

Remark 4.2. The frame ofTheorem 4.1can be discretized by discretizing the continuous
parameterx. As we did inTheorem 3.4, one can accomplish it by taking a discrete finite set
of pointsx1, . . . , xN from the attractor.

5. Frames on fractals via distance

So far we have considered fractal sets which are significantly away from the origin. In
the case where the origin is in the fractal set the above procedure cannot be applied. In
this section we propose a way of having frames on such fractal sets. We use the set up of
Section 2and we assume that there exist a reference pointx0 ∈ R2 such that

Nx0 ∩ A = ∅, (5.1)

whereNx0 is a neighborhood ofx0. SinceT is a contraction

Tm(x) ∈ A for all x ∈ A and for all m = 0,1,2, . . . , (5.2)
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we can fixx0 ∈ R2 such that(5.1) is satisfied. Therefore, there exist a positive constant,A

such that

A ≤ inf
x∈A,m=0,1,2,...

d(Tm(x), x0). (5.3)

SinceA is bounded, by(5.2) there exist a positive constantB such that

sup
x∈A,m=0,1,2,...

d(Tm(x), x0) ≤ B <∞. (5.4)

From(5.3) and (5.4)we have

A ≤ d(Tm(x), x0) ≤ B for all x ∈ A and m = 0,1,2, . . . (5.5)

Now, we intend to have frames as follows:

ψx,m = d(Tm(x), x0)φm. (5.6)

Theorem 5.1. The set

S = {ψx,m : x ∈ A,m = 0,1,2, . . . }
is a frame inH

Proof. Let

F =
∞∑
m=0

∫
A

|ψx,m〉〈ψx,m|dµ(x).

Forφ ∈ H consider

〈φ|Fφ〉 =
∞∑
m=0

∫
A

〈φ|ψx,m〉〈ψx,m|φ〉dµ(x)

=
∞∑
m=0

∫
A

d(Tm(x), x0)
2〈φ|φm〉〈φm|φ〉dµ(x)

=
∞∑
m=0

∫
A

d(Tm(x), x0)
2|〈φ|φm〉|2 dµ(x).

From(5.5)and(2.8)we get

∞∑
m=0

∫
A

d(Tm(x), x0)
2|〈φ|φm〉|2 dµ(x) ≤ B2

∞∑
m=0

|〈φ|φm〉|2 = B2‖φ‖2. (5.7)

Again by(5.5)and(2.8)we get

∞∑
m=0

∫
A

d(Tm(x), x0)
2|〈φ|φm〉|2 dµ(x) ≥ A2

∞∑
m=0

|〈φ|φm〉|2 = A2‖φ‖2. (5.8)
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Combining(5.7) and (5.8)gives

A2‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B2‖φ‖2.

ThusS is a frame inH. �

Remark 5.2. Here again, the frame ofTheorem 5.1can be discretized by discretizing the
continuous parameterx.

Remark 5.3. From(3.2) and (5.5)it is evident that the frame width

w = B2− A2

B2+ A2

is solely depending on the width of the fractal. A good frame meansw� 1. Thus, in order
to get a good frame one needs to consider a narrow fractal.

Now, we present an example of an IFS,T , whose attractor satisfy condition(5.1).

Example 5.4. LetT = {τ1, τ2, τ3}, x = (t1, t2) ∈ R2, whereτ1 = ((1/2)t1, (1/2)t2), τ2 =
((1/2)t1, (1/2)t2)+ (1/2,0) andτ3 = ((1/2)t1, (1/2)t2)+ (1/4,

√
3/4). Notice thatT is

a contraction with a contractivity factor 1/2. The attractor ofT is shown inFig. 1. We pick
up anx0 in the big hole. For this example, the vertices of the triangle are(0,0), (1,0) and
(1/2,

√
3/2). Thus,T satisfies condition(5.1).

Remark 5.5. The following remarks applies to all the frames constructed in this note. We
demonstrate it with the frame constructed inTheorem 3.2:

(a) The frame operatorF is self-adjoint and invertible[2,13]. Thus one can define another
frame as

ψx,m = F−1/2φx,m. (5.9)

In this case we get a resolution of the identity

I =
∞∑
m=0

∫
A

|ψx,m〉〈ψx,m|dµ. (5.10)

From (5.10) one can get a perfect reconstruction. However, explicit knowledge of
F−1/2 is of practical interest to use(5.10).

(b) One can define several equivalent frames associated to the constructed frame following
the procedures given in[2,6,7,13]. We point out some briefly here. If one defines
ψx,m = F−1φx,m then the collection{ψx,m : x ∈ A,m = 0,1, . . . } is a frame with
frame operatorF−1. This frame is called the dual frame of the original frame.

For any operatorU ∈ GL(H) if we defineψx,m = Uφx,m then the collection
{ψx,m : x ∈ A,m = 0,1, . . . } is a frame with frame operatorUFU∗, whereU∗ is the
adjoint ofU. If UU∗ = U∗U = I then the frame is said to be unitarily equivalent to
the original frame.
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6. Frames on finite dimensional Hilbert spaces

Frames on finite dimensional Hilbert spaces are of practical interest in many applications
[4,6,11,12]. In this section we build frames on finite dimensional Hilbert spaces parame-
terized by the elements of a fractal. Here again we work on fractals those satisfy condition
(3.1). SupposeH is a finite dimensional Hilbert space and dimH = N. Let {φm}Nm=1 is an
orthonormal basis ofH. Let ζ ∈ [0,2π), dζ is the invariant measure on [0,2π) and

T̃ m(x) = eimζTm(x),

whereTm(x) is as in(2.7). Forx ∈ A, let

φx,ζ =
N∑
m=1

T̃ m(x)φm. (6.1)

Theorem 6.1. The set of vectorsS = {φx,ζ : x ∈ A, ζ ∈ [0,2π)} is a frame inH.

Proof. The frame operator takes the form

F =
∫ 2π

0

∫
A

|φx,ζ〉〈φx,ζ|dµdζ.

Forφ ∈ H consider

〈φ|Fφ〉 =
N∑
m=1

N∑
k=1

∫ 2π

0

∫
A

〈φ|T̃ m(x)φm〉〈φ|T̃ k(x)φk〉dµdζ

=
N∑
m=1

N∑
k=1

∫ 2π

0

∫
A

ei(m−k)θ〈φ|Tm(x)φm〉〈φ|T k(x)φk〉dµdζ

= 2π
N∑
m=1

∫
A

〈φ|Tm(x)φm〉〈φ|Tm(x)φm〉dµ

= 2π
N∑
m=1

∫
A

|Tm(x)|2|〈φ|φm〉|2 dµ.

Now from(2.8) and (3.2)we have

2π
N∑
m=1

∫
A

|Tm(x)|2|〈φ|φm〉|2 dµ ≤ 2πB2
N∑
m=1

|〈φ|φm〉|2 = 2πB2‖φ‖2.

Again from(2.8) and (3.2)we have

2π
N∑
m=1

∫
A

|Tm(x)|2|〈φ|φm〉|2 dµ ≥ 2πA2
N∑
m=1

|〈φ|φm〉|2 = 2πA2‖φ‖2.

Thus the setS is a frame. �



K. Thirulogasanthar, W. Bahsoun / Journal of Geometry and Physics 50 (2004) 79–98 91

Remark 6.2. The above theorem produces a continuous frame in a finite dimensional
Hilbert space. The additional term eiζ is introduced for convenience. One can observe that
without this term the above construction cannot be carried out. Further, the new variableζ

brings additional redundancy to the frame.

Equal norm frames are of practical interest[6]. In particular, equal norm Parseval tight
frames are useful in the reconstruction process because they produce a resolution of the
identity. In the case of a discrete frame, unit norm Parseval tight frames are, in fact, or-
thonormal bases. However, in the continuous case this is not true. We present these aspects,
as a consequence ofTheorem 6.1, in the following two propositions.

Let

λ(x) =
N∑
m=1

|Tm(x)|2. (6.2)

Now let us define a new set of vectors as

ψx,ζ = λ(x)−1/2
N∑
m=1

T̃ m(x)φm, (6.3)

and set a new measure dν = λ(x)dµ onA.

Proposition 6.3. The set of vectorsS = {ψx,ζ : x ∈ A, ζ ∈ [0,2π)} is a unit norm frame
in H.

Proof. One can easily see that〈ψx,ζ|ψx,ζ〉 = 1 for all x ∈ A, ζ ∈ [0,2π). The rest of the
proof follows fromTheorem 6.1with the measure dν. �

Proposition 6.4. Let {ψx,ζ : x ∈ A, ζ ∈ [0,2π)} is as inProposition 6.3and F be the
corresponding frame operator then{ηx,ζ = F−1/2φx,ζ : x ∈ A, ζ ∈ [0,2π)} is an equal
norm Parseval tight frame inH.

Proof. A proof follows fromRemark 5.5(a) andProposition 6.3. �

Remark 6.5. In quantum mechanical terminology the frames ofProposition 6.4can be
phrased ascoherent statesin the finite dimensional Hilbert spaceH. For definitions and
details of coherent states[1] is an excellent reference.

As a first step to a complete discretization, we label frames by a partly discrete set. For
this, let us discretize one label by picking an infinite number of discrete points from the
fractal corresponding toT , and write a vector as follows:

φxj,ζ =
N∑
m=1

1√
j!
T̃ m(xj)φm. (6.4)

Proposition 6.6. The setS = {φxj,ζ : j = 0,1, . . . ; ζ ∈ [0,2π)} is a frame inH.
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Proof. The frame operator takes the form

F =
∞∑
j=0

∫ 2π

0
|φxj,ζ〉〈φxj,ζ|dζ.

Thus forφ ∈ H we have

〈φ|Fφ〉 =
∞∑
j=0

N∑
m=1

N∑
k=1

1√
j!k!

∫ 2π

0
ei(m−k)ζTm(xj)T k(xj)〈φ|φm〉〈φk|φ〉dζ

=
∞∑
j=0

N∑
m=1

2π

j!
|Tm(xj)|2|〈φ|φm〉|.

Now from(3.2)we have

∞∑
j=0

N∑
m=1

2π

j!
|Tm(xj)|2|〈φ|φm〉|

≤
∞∑
j=0

2πB2

j!

N∑
m=1

|〈φ|φm〉| =
∞∑
j=0

2πB2

j!
‖φ‖2 = 2eπB2‖φ‖2.

Again by(3.2)we have

∞∑
j=0

N∑
m=1

2π

j!
|Tm(xj)|2|〈φ|φm〉|

≥
∞∑
j=0

2πA2

j!

N∑
m=1

|〈φ|φm〉| =
∞∑
j=0

2πA2

j!
‖φ‖2 = 2eπA2‖φ‖2.

Thus the setS forms a frame inH. �

One could restrict the infinite set of points to a finite set of points. We present it in the
following corollary.

Corollary 6.7. The setSM = {φxj,ζ : j = 0,1, . . . ,M, ζ ∈ [0,2π)} is a frame inH for
each positive integer M.

Proof. The proof is similar to theProposition 6.6with different frame bounds, i.e.,

2eπΓ(M + 1,1)A2

M!
‖φ‖2 ≤ 〈φ|Fφ〉 ≤ 2eπΓ(M + 1,1)B2

M!
‖φ‖2,

whereΓ(M + 1,1) is the incomplete gamma. �
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In the case of a finite set of points, in the frame operator, the sum representing the finite
part is a finite sum thus the denominator

√
j! is not necessary anymore (from the proof of

Proposition 6.6one can notice that the term is necessary to guarantee the convergence of
the series). We present it without the term

√
j! in the following corollary. However, from

Corollaries 6.7 and 6.8, one can notice that the presence of
√
j! significantly affect the

frame bounds.

Corollary 6.8. Let

ψxj,ζ =
N∑
m=1

T̃ m(xj)φm. (6.5)

The setSM = {ψxj,ζ : j = 1, . . . ,M, ζ ∈ [0,2π)} is a frame inH for each finite positive
integer M.

Proof. Here again proof follows similar to theProposition 6.6with different frame bounds,
i.e.,

2πMA2‖φ‖2 ≤ 〈φ|Fφ〉 ≤ 2πMB2‖φ‖2. �

Remark 6.9. The frame obtained inTheorem 6.1cannot be extended to infinite dimensional
Hilbert spaces because in such a caseN = ∞, and, thereby, the norm of the vector in(6.1)
is infinity for each pair(x, ζ) ∈ A× [0,2π).

Now we construct another class of frames on finite dimensional Hilbert spaces by fol-
lowing the procedure applied to infinite dimensional Hilbert spaces.

Theorem 6.10. The setS = {ηx,m = Tm(x)φm : x ∈ A,m = 1,2, . . . , N} is a frame inH.

Proof. A proof follows similar toTheorem 3.2. �

6.1. Discrete frames on finite dimensional Hilbert spaces

In this section we build discrete frames on finite dimensional Hilbert spaces. Let dim(H) =
N. Frames on finite dimensional Hilbert spaces with finite number of elements are used
in several applications[4,6,11,12]. We construct a discrete frame withMN elements in the
following theorem.

Theorem 6.11. The setS = {ηxj,m = Tm(xj)φm : j = 1, . . . ,M;m = 1, . . . , N} is a
frame inH.

Proof. The frame operator takes the form

F =
M∑
j=1

N∑
m=1

|ηxj,m〉〈ηxj,m|.
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One can easily see that

A2M‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B2M‖φ‖2. �

From the frame of theTheorem 6.11one can obtain a unit normM-tight frame as follows.

Corollary 6.12. Let

η̄xj,m =
Tm(xj)

|Tm(xj)|φm.

The setS = {η̄xj,m : j = 1, . . . ,M;m = 1, . . . , N} is a unit norm M-tight frame with MN
elements.

Proof. One can easily see that‖η̄xj,m‖ = 1 and the frame operator,F = MIH. �

In the literature of frames, several classes of frames have been obtained by taking linear
superpositions of the basis vectors of Hilbert spaces[1,6]. In the following two theorems
we attempt to adapt it to our construction. For this, let us take a mutually disjoint partition,
{Am : m = 1, . . . , N} of a fractalA. That is,

A =
N⋃
m=1

Am,Am ∩ An = ∅, ∀m �= n.

Let χAm(x) be the characteristic function ofAm.

Theorem 6.13. LetM ≥ N and{x1, . . . , xM} ⊂ A such that{x1, . . . , xM} ∩ Am �= ∅, for
all m = 1, . . . , N. Define

ψj =
N∑
m=1

Tm(xj)χAm(xj)φm. (6.6)

The setSM = {ψj : j = 1, . . . ,M} is a frame inH.

Proof. The frame operator takes the form

F =
M∑
j=1

|ψj〉〈ψj|.

Thus, for anyφ ∈ H

〈φ|Fφ〉 =
M∑
j=1

N∑
m=1

N∑
l=1

Tm(xj)χAm(xj)T
l(xj)χAl(xj)〈φ|φm〉〈φl|φ〉

=
M∑
j=1

N∑
m=1

|Tm(xj)|2χAm(xj)|〈φ|φm〉|2
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becauseAm ∩ An = ∅, ∀m �= n implies

χAm(xj)χAl(xj) =
{

0 if m �= l,
χAm(xj) if m = l.

By the definition of the characteristic function and by(3.2)we have

M∑
j=1

N∑
m=1

|Tm(xj)|2χAm(xj)|〈φ|φm〉|2 ≤ B2
M∑
j=1

N∑
m=1

|〈φ|φm〉|2 = B2M‖φ‖2.

Since{x1, . . . , xM} ∩ Am �= ∅, for allm = 1, . . . , N, by (3.2)we have

M∑
j=1

N∑
m=1

|Tm(xj)|2χAm(xj)|〈φ|φm〉|2 ≥ A2
M∑
j=1

N∑
m=1

χAm(xj)|〈φ|φm〉|2

≥ A2
N∑
m=1

|〈φ|φm〉|2 = A2‖φ‖2.

Thus

A2‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B2M‖φ‖2. �

Remark 6.14. The vectors in(6.6)are only labeled byj. SinceAm∩An = ∅ for allm �= n,
for eachj, xj ∈ Amj for only onemj ∈ {1,2, . . . , N}, thus

ψj = Tmj (xj)φmj .
Compare toTheorem 6.11, in Theorem 6.13the labelm is hidden by the sum.

In the next theorem, let us see how can we make the sum effective on the vector.

Theorem 6.15. LetM,L ∈ N such thatL ≥ N. Let {x1, . . . , xM} and {y1, . . . , yL} are
two discrete subsets ofA such that{y1, . . . , yL} ∩ Am �= ∅ for all m = 1, . . . , N. Define

ψk =
M∑
j=1

N∑
m=1

Tm(xj)χAm(yk)φm.

The setSL = {ψk : k = 1, . . . , L} is a frame inH.

Proof. A proof follows by the same techniques ofTheorem 6.13. In this case we get

A2M‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B2ML‖φ‖2. �

Remark 6.16. Even though for eachk the vectorψk depends on the sum,ψk depends only
one basis element, because for eachk, yk ∈ Amk for only onemk ∈ {1, . . . , N}. Thus the
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vector is, in effect

ψk =
M∑
j=1

Tmk(xj)φmk .

7. Communication networks

Frames are of central interest in signal analysis. Recently, frames of finite dimensional
Hilbert spaces were applied in the study of modern communication networks transport
packets of data from a source to a recipient[11,12]. In particular, equal norm tight frames
are very useful in such analysis at the presence of one or more erased information[4,6,12].

The frames constructed in this note can be adapted to the above applications. Moreover,
we have generated equal norm tight frames at some instances. Our discrete frames are
flexible through the points selected in the fractals, the IFST , and the probability functions.
It may also be interesting to notice that for most of the frames constructed in this note, the
width of the frame is determined by the size (width) of the fractal.

Now, we compare our results to those of[6,12].
A modern communication network, for example Internet, provides means to transport

packets of data from one device to another. In this process at some point the system experi-
ences losses[6,12]. Abstraction of this process can be done with frame expansion (for more
details see Fig. 1 of[12]). A signal vectorφ ∈ H is expanded with a frame operatorF and the
frame coefficients are transmitted as packets of data. The lost packets at intermediate nodes
of the network are modeled as erasures of transmitted frame coefficients. At the receiver
side, this looks like the original frame without vectors corresponding to erased coefficients.
The question is: Can the receiver recover the original information without errors among
losses? If the lost packet is independent of the other transmitted data, then the information
is truly lost to the receiver (see Section 5 of[6] or the Example of page 219 of[12]). If there
are dependencies between transmitted packets one could have partial or complete recovery
despite losses.

We start our comparison with the notion of a frame robust tok-erasures or ak-robust
frame[6]. In the following discussionH is anN-dimensional Hilbert space.

Definition 7.1. A frame{φi}Mi=1 of H is said to be robust tok-erasures if{φi}i∈J\I is still a
frame forI any indexed subset ofk-erasures,I ⊂ {1,2, . . . ,M} = J, card(I) = k.

Theorem 7.2. LetJ = {1, . . . ,M},K = {1, . . . , N} and S be the frame ofTheorem 6.11.
The frame S is robust tocard(I)-erasures for anyI ⊆ J .

Proof. LetL = card(I) ≤ M, then one can see that the frame operator

F =
∑
j∈J\I

N∑
m=1

|ηxj,m〉〈ηxj,m|
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satisfies

A2(M − L)‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B2(M − L)‖φ‖2

for all φ ∈ H. �

The frameS of Corollary 6.12provides us with a unit normM-tight frame withMN
elements. In fact,Theorems 6.11, 6.13 and 6.15andCorollary 6.12provide constructive
methods via the fractal sets to build discrete frames robust to erasures. Theorem 3.1 of[12]
shows us that unit norm tight frames optimize robustness to quantization noise, accord-
ingly, the frameS of Corollary 6.12optimizes robustness to quantization noise. Further,
Theorem 4.1of [12] proves that equal normM/N-tight frames withM elements of the
Hilbert spaceRN is robust to one-erasure with lower frame boundA1 = M/N − 1 and
upper frame boundB1 = M/N. One can observe that, in this case, the frame looses its
tightness.

In the following theorem, we are going to show that the frameS of Corollary 6.12is
robust to erasures up to certain degree without loosing its tightness.

Theorem 7.3. LetJ = {1, . . . ,M},K = {1, . . . , N} and S be the frame ofCorollary 6.12.
The frame S is robust to card(I)-erasures for anyI ⊆ J and

Se = {η̄xj,m : j ∈ {1, . . . ,M}\I;m = 1, . . . , N}
is [M − card(I)]-tight.

Proof. Let card(I) = L. It is straight forward to see that the frame operator

F =
∑
j∈J\I

N∑
m=1

|η̄xj,m〉〈η̄xj,m|

satisfies

〈φ|Fφ〉 = (M − L)‖φ‖2, ∀φ ∈ H. �

Remark 7.4. In agreement with the arguments of[6,12], the frames ofTheorem 6.11and
Corollary 6.12are not robust to erasures through the entries of the indexm because, in
such a case, a lost component is independent of the other components. For example, for the
frame ofTheorem 6.11, for anyI ⊆ {1, . . . ,M}

Se1 = {ηxj,m : j ∈ {1, . . . ,M}\I;m = 1, . . . , N}
is a frame, but for anyI ⊆ {1, . . . , N}

Se2 = {ηxj,m : j ∈ {1, . . . ,M};m ∈ {1, . . . , N}\I}
is not a frame.

In the case of Theorem 4.1 of[12] more than one deletion from the frame is not discussed.
Further, it was argued that unit norm tight frames may fail to remain a frame after(M −
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N)-erasures. Theorem 4.2 of[12] proves that a class of harmonic frames are robust to
(M −N)-erasures.

In the following, we show that the frames ofTheorems 6.13 and 6.15have similar
properties. Moreover, one can see that the frames ofTheorems 6.13 and 6.15are built
through fractal sets to any abstract Hilbert space of dimensionN while the frames of
Theorem 4.2 of[12] are a particular type of frames ofRN andCN .

Theorem 7.5. Let SM be the frame ofTheorem 6.13. SM is robust tocard(I)-erasures if
card(I) ≤ M −N and{x1, . . . , xM−N} ∩ Am �= ∅ for all m = 1, . . . , N.

Proof. Let card(I) = q andJ = {1, . . . ,M}, then following the proof ofTheorem 6.13we
can see that the frame operator

F =
∑
j∈J\I

|ψj〉〈ψj|

satisfies the frame condition

A2‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B2(M − q)‖φ‖2, ∀φ ∈ H.
�

Theorem 7.6. Let SL be the frame ofTheorem 6.15. SL is robust tocard(I)-erasures if
card(I) ≤ L−N and{y1, . . . , yL−N} ∩ Am �= ∅ for all m = 1, . . . , N.

Proof. A proof follows similar toTheorem 6.13. �
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