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Abstract

Frames of finite dimensional Hilbert spaces have recently been of great interest in applications
to modern communication networks transport packets. In this note, continuous and discrete frames,
living on fractal sets, of both finite and infinite dimensional separable abstract Hilbert spaces are
found. In particular, we find discrete frames, robust to erasures, of finite dimensional Hilbert spaces
using iterated function systems.
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1. Introduction

Hilbert spaces are the underlying mathematical structure of many areas of physical appli-
cations, predominantly, quantum theories and signal analysis. Signal analysis is concerned
with decomposing and reconstructing vectors of a Hilbert space using simpler vectors with-
out loosing essential information. What are these simpler vectors and how efficient are they?
Since computers can only work with a finite set of data points, these essential components
have to be collected with extra care. This practice may not be successful if we decompose
the signal in terms of an orthonormal basis of the Hilbert space of the problem because
in such a case the decomposition will be unique. The drawbacks of an orthonormal basis
is argued well in8,9]. In order to overcome this difficulty, practitioners looked for an al-
ternative. As a result, by relaxing the orthogonality, overcomplete families of vectors were
considered, such families are called frames. A specific type of frame is called wayEst
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The theory of frames was initiated by Duffin and Schaefff€) in 1952 in the context of
nonharmonic Fourier series. A significant role of frames in signal processing was pioneered
by Daubechies et 8], and a landmark development was given by DaubedBjeSrames

and their applications are very active areas of current resgg&jhFrames have been used

in signal processing because of their resilience to additive noise, their numerical stability
of reconstructiorf9], and greater freedom to capture signal characterifgics-or exam-

ple, [11] uses the redundancy of a frame to mitigate the effect of losses in packet-based
communication systems. Further, many of the applications of frames involve modeling and
constructing infinite frames for infinite dimensional Hilbert spgdés

The theory of iterated function systems has found important applications in the area of
computer graphic§3], and in modeling interference effects in quantum mechajiks
Recently, iterated function systems has been used to provide a new method of computing
entropy for some classical and qguantum dynamical sysf@djsThe primary aim of this
note is to find a link between two important theories, frames and iterated function systems
and to develop their applications. [h5] we used iterations of rational functions to obtain
frames parameterized by the elements of a Julia set. In this note, we use iterated function
systems to obtain continuous and discrete frames, living on fractal sets, of both finite and
infinite dimensional separable abstract Hilbert spaces.

In Section 2ve present definitions and the set up of the problerBdation 3we discuss
continuous and discrete frames on infinite dimensional Hilbert spaces using iterations.
Section 4eals with a continuous frame on infinite dimensional Hilbert space, where we use
probability functions together with the iterations to obtain fransestions 2—4ise fractals
which are significantly away from the origin to obtain frames. Using a distance function,
in Section 5 we obtain frames on fractals which contain the origin in itSkection 6we
discuss continuous and discrete frames on finite dimensional Hilbert spa&estion 7
following the ideas developed [6,11,12] we use the frames of this paper in applications
to modern communication networks transport packets and compare our results to the results
of [6,12].

2. Preliminariesand set up

We start with a general definition of a frarfie2,7,13]

Definition 2.1. Let (X, u) be a locally compact measure space grige an abstract sepa-
rable Hilbert space. The family of vectors

E={mlxeX}CH (2.1)
is said to form a frame it if the operator
F= [ ndonide 2.2)
X
satisfies

Allgl? < (¢|Fp) < Blgl? forall ¢ e 9, (2.3)
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where A and B are positive constants. K = B the setS is called a tight frame. If the
operatorF = I, the identity operator afy, then the se® is said to give a resolution of the
identity. Note that ifX = J is a discrete set andis a counting measure, the operatd12)
takes the form

F=) Il (2.4)
jel
In the case wher& is partly discrete, the corresponding partiotould in general be a
weighted counting measure a(®i2) takes the form

F=Y" / 2.} (0. j1 A (), (2.5)
jel X'

whereX = X’ UJ, X’ is the continuous part with measurandJ’ the discrete part with
a counting measure on it.
We introduce some frame terminoloff]:

(i) Equal norm frame|ln.|l = llnyll Vx,y € X.
(i) Unit norm frame:||n,| =1 Vx € X.
(iii) Parseval tight frameA = B = 1.

The quantity
B—A
w=——- (2.6)
B+ A
is called the width of the frame. The width of a frame measures the tightness of the frame.
Now, we present the set up of the problem.
Let (X, d) be acomplete metric space andro, ..., Tx be a collection of transformations
from X to itself. We assume that, o, ..., Tx are contractions, i.e., far=1,... , K

max d(te(x), Te(¥)) < o - d(x, y),
wherea < 1. An iterated function system, IFS for short, with state dependent probabil-

ities, T = {t1,...,1x; p1(x), ..., px(x)} is defined by choosingy (x) with probability
pr(x), pr(x) > 0, Z,le pr(x) = 1. The iterates of" are given by

T" (x) = Thyy O Thyyq O * O Ty (X) (2.7)
with probability
Py (Th_q © -+ 0 Tk (X)) = Phiyy_q (Thypy_p © -+ 0 Thy (X)) -+ - Piy (X).

Let (H(X), h(d)) denote the space of nonempty compact subsets correspondikigdp
with Hausdorff metridi(d) [3]. T : H(X) — H(X) is given by

T(B) = UK 7 (B)

for all B € H(X). The Banach contraction theorem furnishes an attractor to the dynamical
system(X, 7) [3]. In the special case whefh = R?, the attractor of an IFS is called a fractal
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[3]. The presence of the probabilities allows more weight on some transformations over the
others. Thus, the fractal may have parts more “dense” than the remaining parts.
Since we are oiR?, the transformations are two component objects, i.e.,

" (x) = (f"(x), " (x)).

From now on we interpref™ (x) as the complex numbei” (x) + ig” (x) and denote it by
the same symbo¥” (x). We take a Hilbert spac® over complex numbers, thus the object
T™(x)¢ is well-defined in for all ¢ € $.

Let A denote the attractor of the IFS afél the Borel subsets ofA, d). Let u be a
probability measure o such that

/ dux) = 1. (2.8)
A
In particular, one can use the probabilities to construct a measure on the attractor. For

example, if the probabilities are constants, the measure can be constructed in the following
way: u(A) = 1, u(tx(A)) = pr, u(z o ©r(A)) = p; - pr, and so on.

3. Frameson fractalsusing iterations

In this section, we assume th&it= R? andd = | - | is the Euclidean metric. We also
assume that there exist a neighborhawgl, of the origin such that
NoNnA=40. (3.1)

Remark 3.1. Observe that i satisfieq3.1), we have
A<|T"(x)]<B forall m=0,1,2... andforall xecA, (3.2)

whereA and B are positive constants. The contraction property of the IFS, which grantees
the existence of the attractor, is essential in the proof of our theorems. Infact, the contraction
factor is the upper bound of the frame operator in study.

In the context of signal processing the interesting Hilbert space wouidbe.2 (A, du).
The elements of this Hilbert space can be interpreted as finite energy signals while the
measure spac@\, du) serve as the space of parameters. Since the following construction
can be carried out with any separable Hilbert space, weatcebe an abstract separable
Hilbert space andlp,,, }~_ is an orthonormal basis of it. § is a finite dimensional Hilbert
space then the orthonormal basis takes the fmsm}fx:l, whereN is the dimension of
the Hilbert space. Frames on finite dimensional Hilbert spaces are of practical interest in
several directions, for example sge6,11,12]

In the following theorem we present a general construction of a continuous frame.

Theorem 3.2. For x € A let
Gxm = T" (X)Pm» (3.3)
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andS = {¢xmlx € A,m =0,1,2,...}. If condition(3.1)is satisfiedthe set S constitute
a frame in$). That is the operator

F= Y [ 160 Gl ciato)
m=0

satisfies

Cl¢l? < (¢|Fp) < D|o|?

for all ¢ € $) and some positive constants C and D

Proof. We have

@IFp)=Y /A (Blem) Bemld) A=Y fA (BT (1)) (T (51l ) A (),
m=0 m=0
(3.4)

(plFp) = /A T () 2Pl (D |$) s () = /A 7™ ()Pl ) dpa (x).
m=0 m=0
(3.5)
By (2.8), (3.2) and (3.4)ve obtain:

(@IFg) < B> [(dlom)I* = Bll¢]®

m=0

and

(BIFp) = A2 " [(pldm)|* = A% 9%,

m=0

This ends the proof. O

Remark 3.3. Inthe terminology of2], the frame constructed itheorem 3.Zan be named
as acontinuous frame of infinite rank

In the context of signal processing, the selectidndu, {y; ,}) reflects the selection of
a part of the signal which we intend to isolate and anaf{te

3.1. Discrete frame

In practice one has to deal with a discrete set of vectors, in fact, with a finite set of vectors.
The discretization of a continuous process is often difficult and ill-p¢sdd8)]. Here we
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propose a method for discretizing the above constructed frame by choosing a finite set of
points in the attractor.

Theorem 3.4. For afixed integetV € N letx; € A and
¢xi,m = Tm(xi)¢ms (36)

andSy = {¢ymlxi€A,i=1,2,...,N;m =0,1,2,...}. If condition(3.1)is satisfied
the set S constitutes a framesin That is the operator

N oo
F = ZZ |¢xl m ¢xlm|
i=1 m=0
satisfies

Cl¢l? < (¢|Fp) < D|o|?

for all ¢ € $) and some positive constants C and D

Proof. We have

N oo N oo
(¢l Fp) = ZZ (Dldsm) (b |®) = Y D> ASIT™ ) ) (T (x1) b |)
i=1m=0 i=1m=0
N oo N oo
=) Y AT )P lgm) (dmld) = Y D AT ) PlBlon) > (3.7)
i=1 m=0 i=1 m=0

By (3.2) and (3.7)e obtain:

(@IFg) < NB* " [(¢plgm)|* = NB?||¢|®

m=0
and
(@IFg) = NA* " [(Blom)|> = NAZ|1o]1°.
m=0

This ends the proof. O

We can also obtain a discrete frame with a discrete infinite set of points. We present it
in the following theorem. It may be interesting to notice that the cardinality of the frame is
the same as the cardinality of the orthonormal basis.

Theorem 3.5. Letx,, € A be a discrete set of points and

Oxpm = T" (Xm) P » (3.8)
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andS = {¢.,.mIm =0,1,2,...}.If condition(3.1)is satisfiedthe set S constitute a frame
in 9. That is the operator

F = Z |¢xm,m><¢xm,M|

m=0

satisfies

Cllpl? < (9| Fp) < D|olI>

for all ¢ € $H and some positive constants C and D
Proof. Proof is similar to the proof ofheorem 3.4 O

Corollary 3.6. For eachx € A the setS, = {¢xmlm = 0,1,2,...} is an orthogonal
family in $. Further it is a frame

Remark 3.7. In the case where one intend to use a different label foxthef (3.8), the
result of Theorem 3.5ail to hold. That is

S={pmli=12...;m=012...)

is not a frame because in this case the numbef Theorem 3.4s infinity and thereby the
frame bounds become infinite.

Often discretization of a continuous frame changes the frame \ia8}hIn our case, by
Theorems 3.2 and 3w#e can see that through the discretization process the frame width
remains the same while the frame bounds change.

Now, we present an example which satisfies assumgidr) and henc&heorems 3.2,
3.4and 3.5

Example 3.8. Let T = {11, 10, 13}, x = (11, 12) € R?, wheret; = ((1/2)t1, (1/2)12) +
(1/2,0), T2 = ((1/2t1, (1/2)t2) + (1,0) and 3 = ((1/2)11, (1/2)12) + (3/4,/3/4).
Notice thatT is a contraction with a contractivity factor 1/2. The attractof’aé shown in

Fig. 1with the origin outside the attractor. For this example, the vertices of the triangle are
(1,0), (2,0) and(3/2, +/3/2). Thus,T satisfies conditiot3.1).

4. Labeling with probability functions

In this section, we present another class of continuous frame using the probability func-
tions together with the iterations. These probability functions bring additional weight on the
frame vectors, and can be used to control the norm of the vectors. We use the assumptions
of Section 3 Consider the set of vectors

S ={(Ymx xeAm=012..:k=1.._ K}
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-7!‘7' r'!'r rY!Y- -T!T-

Fig. 1. Sierpinkski triangle, the attractor of the IFSHramples 3.8 and 5.4

where

Y, xk = (P (Thyy_q © *++ © Thy (X)) Phyy_s

X (Thyy 5 0= 0 Ty (X)) -+« Pry N2 - T™ (X) . (4.1)

Theorem 4.1. The set of vector§ is a frame in$, that is the operator

F= ZZ/ Wim e k) (Wm. k| A () (4.2)

k=1m=0

satisfies the frame conditid@.3).

Proof. We have

(p| Fp) = ZZ/ (D1 Wim k) (W k0) Ot ()

k=1m=0

—ZZ/ (Dl(Phy (Thy_y © 0 Thy (1) - .. Py (X)) M2 -

k=1m=0
T™ (X)Pm) (P (Thyy_g © -+ © Ty (X))« + « Py N2 - T™ (X)) Apa (%)



K. Thirulogasanthar, W. Bahsoun/Journal of Geometry and Physics 50 (2004) 79-98 87

K oo
ZZ Z/I;pkm(rkmfl Or-- OTkl(-x))"'pkl(-x) :

k=1m=0

T ()1 2(p1m) (b |0) At (x)
K oo
=ZZ/Apk,,,(rk,,,,lo---orkl(x»...pkl(x)~|T’"<x>|2|<¢|¢m>|2du(x>.

k=1m=0
4.3)
Therefore,
oo K
<¢|F¢> = Bz Z Z/I;pkm (Tkmfl 0+++0 Tkl(x)) . pkl(x)|<¢|¢m>|2 d,LL(,X')
m=0 k=1
= B Z/Aleabm)IZdu(x) = B?lI¢lI%, (4.4)
m=0
on the other hand
oo K
WIF) = 4° Z Z /A P (Thyy—y © =+ 0 Ty (X)) ... Pkl(X)|(¢|¢m)|2dM(X)
m=0k=1
=4y fA (@l 12 die(x) = A2l 2. (4.5)
m=0
The proof follows from the inequalitiggl.4) and (4.5) 0

Remark 4.2. The frame ofTheorem 4.Xan be discretized by discretizing the continuous
parametex. As we did inTheorem 3.4one can accomplish it by taking a discrete finite set
of pointsxi, .. ., xy from the attractor.

5. Frameson fractalsvia distance

So far we have considered fractal sets which are significantly away from the origin. In
the case where the origin is in the fractal set the above procedure cannot be applied. In
this section we propose a way of having frames on such fractal sets. We use the set up of
Section 2and we assume that there exist a reference pgirt R? such that

Ny, NA =0, (5.1
whereN,, is a neighborhood ofy. SinceT is a contraction

T"(x) e A forall xe A andforall m=0,1,2,..., (5.2
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we can fixxg € R? such tha(5.1)is satisfied. Therefore, there exist a positive constant,
such that

A< inf d(T™(), x0). (5.3)
xeA,m=0,1,2,...

SinceA is bounded, by5.2)there exist a positive constaBtsuch that

sup d(T™(x), xg) < B < o0. (5.4)
xeA,m=0,1,2,...
From(5.3) and (5.4we have
A<d(T"(x),x0) <B forall xeA and m=0,1,2,... (5.5)

Now, we intend to have frames as follows:

Vam = d(T" (x), X0)m .- (5.6)
Theorem 5.1. The set

S={Ym xeAm=012 .}

is a frame in$HH

Proof. Let
F=Y" / Wem) (Wm| A ().
m=0 A

For¢ € $ consider

<¢|F¢>=Z/A<¢|wLm><l/fx,m|¢) dp(x)

m=0

= [ AT, 200200161 0 ) o)
m=0

-y /A AT (), %02 (Gl 2 ).

m=0

From(5.5)and(2.8) we get

> /A d(T™ (x), X0)*(Blpm) I° A (x) < B? Y [($lopm)* = BlI$II°. (5.7)

m=0 m=0

Again by (5.5)and(2.8) we get

> /A A(T™ (x), X0)*[(®1¢m) 1P dpe () = A% D" [(Blepm) 1 = A%[19]1%. (5.8)
m=0

m=0
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Combining(5.7) and (5.8pives

A%gII” < (9| Fo) < BlIgII°.
ThusG is a frame in§. O
Remark 5.2. Here again, the frame dtheorem 5.Xkan be discretized by discretizing the
continuous parametet
Remark 5.3. From(3.2) and (5.5)t is evident that the frame width
B? — A?
T B2+ A?

is solely depending on the width of the fractal. A good frame mears 1. Thus, in order
to get a good frame one needs to consider a narrow fractal.

w

Now, we present an example of an IFS,whose attractor satisfy conditi¢B.1).

Example5.4. LetT = {11, 12, 13}, x = (11, 12) € RZ, wherer; = ((1/2)t1, (1/2)t2), 12 =
(1/2)11, (1/2)12) + (1/2,0) andwz = ((1/2)11, (1/2)12) + (1/4, +/3/4). Notice thatT is
a contraction with a contractivity factor 1/2. The attracto@aé shown inFig. 1. We pick
up anxg in the big hole. For this example, the vertices of the trianglg@r6), (1, 0) and
(1/2, +/3/2). Thus,T satisfies conditior5.1).

Remark 5.5. The following remarks applies to all the frames constructed in this note. We
demonstrate it with the frame constructedlimeorem 3.2

(&) The frame operatdt is self-adjoint and invertiblf2,13]. Thus one can define another
frame as

I//x,m = F_1/2¢x,m~ (59)

In this case we get a resolution of the identity
o0
1=y fA V) (V| . (5.10)
m=0

From (5.10) one can get a perfect reconstruction. However, explicit knowledge of
F~1/2s of practical interest to ug®.10)

(b) One can define several equivalent frames associated to the constructed frame following
the procedures given if2,6,7,13] We point out some briefly here. If one defines
Yem = F‘1¢>x,m then the collectiofyy ,, : x € A,m = 0,1,...}is a frame with
frame operato# L. This frame is called the dual frame of the original frame.

For any operatol/ € GL(9) if we definey, ,, = U¢,» then the collection
{Yom :xe€eA,m=0,1,...}is aframe with frame operat&fFU*, whereU* is the
adjoint of U. If UU* = U*U = I then the frame is said to be unitarily equivalent to
the original frame.
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6. Frameson finite dimensional Hilbert spaces

Frames on finite dimensional Hilbert spaces are of practical interest in many applications
[4,6,11,12] In this section we build frames on finite dimensional Hilbert spaces parame-
terized by the elements of a fractal. Here again we work on fractals those satisfy condition
(3.1). Suppose is a finite dimensional Hilbert space and diim= N. Let {¢m}n’\1’:1 is an
orthonormal basis af. Let¢ € [0, 2), d¢ is the invariant measure on,[Rr) and

r‘I“vm (x) = eim;Tm (x),

whereT™ (x) is as in(2.7). Forx € A, let

N
bre =Y T"(@X)¢m. (6.1)

m=1

Theorem 6.1. The set of vectorS = {¢, : x € A, ¢ € [0, 2m)} is a frame ins).

Proof. The frame operator takes the form

2r
F=/ / |¢x,c) (Px,¢| A dE.
o Ja

For¢ € $ consider

N N 2 ~ ~
(plFp)=> ") /0 fA (OIT™ ()} (d| T (x) ) dpe A

m=1k=1

N N 27 .
=22 /0 fA &N GIT™ (X)) (BT (1)) Ayt g

m=1k=1

N
=21 Y [ 1" @I W)
m=1

N
=20 Y [ 1@ Rlsln) o
m=1
Now from (2.8) and (3.2we have
N N
2y /A T ()2 (@lpm) 1> dp < 2782 D |(plgm)|* = 27B%|¢]1%.
m=1 m=1

Again from(2.8) and (3.2)ve have

N N
2r ) fA T () 2 (Blbm) 1P = 2A% D " |(plgm) |2 = 27A% )12

m=1 m=1

Thus the sef is a frame. O
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Remark 6.2. The above theorem produces a continuous frame in a finite dimensional
Hilbert space. The additional ternt és introduced for convenience. One can observe that
without this term the above construction cannot be carried out. Further, the new variable
brings additional redundancy to the frame.

Equal norm frames are of practical interg&t In particular, equal norm Parseval tight
frames are useful in the reconstruction process because they produce a resolution of the
identity. In the case of a discrete frame, unit norm Parseval tight frames are, in fact, or-
thonormal bases. However, in the continuous case this is not true. We present these aspects,
as a consequence dheorem 6.1in the following two propositions.

Let
N
Ax) =) T (). (6.2)
m=1
Now let us define a new set of vectors as
N
Ve =202 T (0O, (6.3)
m=1

and set a new measure & A(x) du onA.

Proposition 6.3. The set of vector§ = {y, ; : x € A, { € [0, 2m)} is a unit norm frame
in $.

Proof. One can easily see thal, ;|v, ) = 1forallx € A, ¢ € [0, 27). The rest of the
proof follows fromTheorem 6.with the measured O

Proposition 6.4. Let{y,, : x € A, ¢ € [0, 2n)} is as inProposition 6.3and F be the
corresponding frame operator then, , = F—1/2¢x,; tx € A, ¢ €]0,27)} is an equal
norm Parseval tight frame isy.

Proof. A proof follows fromRemark 5.%a) andProposition 6.3 O
Remark 6.5. In quantum mechanical terminology the framesPobposition 6.4can be
phrased asoherent statein the finite dimensional Hilbert spacg. For definitions and
details of coherent stat¢k] is an excellent reference.

As a first step to a complete discretization, we label frames by a partly discrete set. For

this, let us discretize one label by picking an infinite number of discrete points from the
fractal corresponding t@, and write a vector as follows:

N
1 .
Oxj0 = E —=T" (x})Pm- (6.4)
m=1 ‘]! !

Proposition 6.6. The setS = {¢,, ;1 j=0,1,...;¢ €0, 27)} is a frame ins.
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Proof. The frame operator takes the form

F= Z/ |6x,.¢) (x| Oz

Thus forg € $ we have

(9| F)

N
Z = / gm— k)CTm(x])Tk(xj)(¢|¢m)(¢k|¢> dg

7" () 2] (Pl .

oo N
2.2
oo N
DI
Now from (3.2) we have

ZZ —|Tm ENIRICIS]

j=0m= 1
00 2 N 00 2
2nB 2B
< ZO T Zl|<¢>|¢m> = ZO Tllcbllz = 2emB?||$]1°.
Jj= e J=

Again by (3.2)we have

Z Z —|T'"(x,)| |{@ldm) |

j=0m= l
> 2742 X X 2A2
i Z |{plbm) I—ZTH¢“2=2€”A2“¢”2-
]=0 m=1 j=0
Thus the sef forms a frame irf). O

One could restrict the infinite set of points to a finite set of points. We present it in the
following corollary.

Corollary 6.7. The setSy = {¢x,: 1 j=0,1,...,M,¢ € [0, 27)} is a frame in§ for
each positive integer M

Proof. The proof is similar to th&roposition 6.&vith different frame bounds, i.e.,

2en (M + 1, 1)A? 2en (M +1,1)B?
7 16117 < (@I Fg) < i

lplI%,

wherel(M + 1, 1) is the incomplete gamma. O
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In the case of a finite set of points, in the frame operator, the sum representing the finite
part is a finite sum thus the denominatgy! is not necessary anymore (from the proof of
Proposition 6.6ne can notice that the term is necessary to guarantee the convergence of
the series). We present it without the teg/T in the following corollary. However, from
Corollaries 6.7 and 6,%ne can notice that the presencedf! significantly affect the
frame bounds.

Corollary 6.8. Let

N
Yoo = Y T"(x))¢m. (6.5)

m=1

The setSy = {Yx;c 1 j=1,..., M, ¢ € [0, 2m)} is a frame in$) for each finite positive
integer M

Proof. Here again proof follows similar to tHeroposition 6.&vith different frame bounds,
ie.,

27MA?||$I|? < (p|Fg) < 27MB?||g]1%. O
Remark 6.9. The frame obtained itheorem 6.Ttannot be extended to infinite dimensional
Hilbert spaces because in such a céise oo, and, thereby, the norm of the vector(11)
is infinity for each pait(x, ¢) € A x [0, 27).

Now we construct another class of frames on finite dimensional Hilbert spaces by fol-
lowing the procedure applied to infinite dimensional Hilbert spaces.

Theorem 6.10. ThesetS = {nym = T"(X)pm :x € A,m=1,2,..., N}isaframe ing.
Proof. A proof follows similar toTheorem 3.2 O
6.1. Discrete frames on finite dimensional Hilbert spaces
Inthis section we build discrete frames on finite dimensional Hilbert spaces. L&yl
N. Frames on finite dimensional Hilbert spaces with finite number of elements are used
in several applicationgl},6,11,12] We construct a discrete frame withN elements in the

following theorem.

Theorem 6.11. The setS = xjm = T"x))pm * j=1,....,M;m =1,..., N} is a
frame in$.

Proof. The frame operator takes the form

M N
F = Z Z |77xj,m><7lx_,-,m|-

j=1lm=1
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One can easily see that

AM||$I? < (9| Fp) < B*M ||, O
From the frame of th&heorem 6.1bne can obtain a unit noriv -tight frame as follows.

Corollary 6.12. Let
T (xj)

= e

Nxj,m

ThesetS = {ny,m:j=1,....,M;m=1,..., N}is aunit norm M-tight frame with MN
elements

Proof. One can easily see thi.,; || = 1 and the frame operataF, = Mlg. O

In the literature of frames, several classes of frames have been obtained by taking linear
superpositions of the basis vectors of Hilbert spdé&ed). In the following two theorems
we attempt to adapt it to our construction. For this, let us take a mutually disjoint partition,
{A, :m=1,..., N}ofafractalA. Thatis,

N
A=JAn AuN Ay =0, Ym #n.

m=1

Let x4, (x) be the characteristic function df,.

Theorem 6.13. LetM > N and{x1,...,xy} C A suchthat{xq,...,xy} NA, #@,for
alm=1,..., N. Define

N
Y= T" (X)X, (X)) (6.6)

m=1

TheselSy ={y;:j=1,..., M}is aframe ing.

Proof. The frame operator takes the form

M
F=Y "yl
=1

Thus, for anyp € 9

M N N

(GIF) =Y "> T (xp)xan CNT (x ) xa, (x)) (Dl (d1])

j=1lm=11=1

M N
=YD AT @) Pxan €N Bldm)

j=1lm=1
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becauset,, N A, =@, Vm # nimplies

0 if m+£1,

XA (X)) x4, (X)) = aa, () 0 mo=1.

By the definition of the characteristic function and([3y2) we have

ZZ|T'"<xJ>| X P (Dlem)[? < BZZZ| (plgm)|? = BZM||¢]|>.

j=1m=1 j=1lm=1

Since{x1,...,xy}NA, @, forallm =1,..., N, by (3.2)we have

Z Z T ()P XA, XD (Blm) |* = A Z Z X (Dl 2

j=1lm=1 j=1m=1

N
> A% " [(glom)|? = A%¢l%.

m=1
Thus

A?|pl1% < (| Fp) < B*M|p|>. 0

Remark 6.14. The vectors ir{6.6)are only labeled by. SinceA,,N A, = @forallm # n,
for eachj, x; € A, foronly onem; € {1,2,..., N}, thus

1/fj = ij (xj)¢mj-
Compare tarheorem 6.1lin Theorem 6.13he labeln is hidden by the sum.

In the next theorem, let us see how can we make the sum effective on the vector.

Theorem 6.15. Let M, L € N such thatL > N. Let{xs,...,xpy}and{ys,...,y.} are
two discrete subsets af such that{y1, ...,y } N A, #@forallm =1,..., N. Define

M N
Y=Y T" @)X, G-

j=1m=1

ThesetS, ={yy :k=1,..., L}is aframe in$.

Proof. A proof follows by the same techniquesDfieorem 6.13In this case we get

A2M|9l1? < (| Fp) < B>MLI|g||%. O

Remark 6.16. Even though for eachthe vector/;, depends on the sunf, depends only
one basis element, because for elacty, € A,,, for only onemy € {1, ..., N}. Thus the
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vector is, in effect

M
Y=Y T"(x))bm,.

j=1

7. Communication networks

Frames are of central interest in signal analysis. Recently, frames of finite dimensional
Hilbert spaces were applied in the study of modern communication networks transport
packets of data from a source to a recipidrit, 12] In particular, equal norm tight frames
are very useful in such analysis at the presence of one or more erased inforjdh&jba]

The frames constructed in this note can be adapted to the above applications. Moreover,
we have generated equal norm tight frames at some instances. Our discrete frames are
flexible through the points selected in the fractals, theTF8nd the probability functions.

It may also be interesting to notice that for most of the frames constructed in this note, the
width of the frame is determined by the size (width) of the fractal.

Now, we compare our results to those/6f12].

A modern communication network, for example Internet, provides means to transport
packets of data from one device to another. In this process at some point the system experi-
ences lossd$,12]. Abstraction of this process can be done with frame expansion (for more
details see Fig. 1 ¢1.2]). A signal vector € $ is expanded with a frame operat®and the
frame coefficients are transmitted as packets of data. The lost packets at intermediate nodes
of the network are modeled as erasures of transmitted frame coefficients. At the receiver
side, this looks like the original frame without vectors corresponding to erased coefficients.
The question is: Can the receiver recover the original information without errors among
losses? If the lost packet is independent of the other transmitted data, then the information
is truly lost to the receiver (see Section §6f or the Example of page 219 fif2]). If there
are dependencies between transmitted packets one could have partial or complete recovery
despite losses.

We start our comparison with the notion of a frame robust-erasures or &-robust
frame[6]. In the following discussiom) is an N-dimensional Hilbert space.

Definition 7.1. A frame{q&i}{‘i1 of § is said to be robust tb-erasures if{¢;};c s\ is still a
frame for/ any indexed subset éferasures] c {1, 2, ..., M} = J, card]) = k.

Theorem 7.2. LetJ ={1,..., M}, K ={1,..., N} and S be the frame dtheorem 6.11
The frame S is robust tward 7)-erasures for any C J.

Proof. Let L = cardl) < M, then one can see that the frame operator

N
F = Z Z|77x]-,m><nx]-,m|

jeN m=1
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satisfies
2 2 2 2
AS(M — D)li¢l” = (9| Fp) = B*(M — L)|¢ll

forall ¢ € 9. d

The framesS of Corollary 6.12provides us with a unit nornM-tight frame withMN
elements. In factTheorems 6.11, 6.13 and 6.45d Corollary 6.12provide constructive
methods via the fractal sets to build discrete frames robust to erasures. Theorerfi3]1 of
shows us that unit norm tight frames optimize robustness to quantization noise, accord-
ingly, the frameS of Corollary 6.120ptimizes robustness to quantization noise. Further,
Theorem 4.1of [12] proves that equal normi//N-tight frames withM elements of the
Hilbert spaceR” is robust to one-erasure with lower frame boutid= M/N — 1 and
upper frame bound; = M/N. One can observe that, in this case, the frame looses its
tightness.

In the following theorem, we are going to show that the fragnef Corollary 6.12is
robust to erasures up to certain degree without loosing its tightness.

Theorem 7.3. LetJ ={1,...,M}, K ={1,..., N} and S be the frame &orollary 6.12
The frame S is robust to caif)-erasures for any < J and

Se={nx;m:je{l,... MNm=1 ... N}
is[M — card D)]-tight.

Proof. Letcardl) = L. Itis straight forward to see that the frame operator
N
F= "% licjm)(iic;ml
jeINI m=1

satisfies
(I Fp) = (M — L)|19lI%, Vo € 5. O

Remark 7.4. In agreement with the arguments[6f12], the frames offheorem 6.15nd
Corollary 6.12are not robust to erasures through the entries of the indé&ecause, in

such a case, a lost component is independent of the other components. For example, for the
frame of Theorem 6.11foranyl C {1, ..., M}

Selz{nxj,m:je{1,...,M}\I;m=1,...,N}
is a frame, but forany C {1, ..., N}
Se; = {nxjm 1 j€{l, ... M})ym e {l, ..., N)\I}

is not a frame.

Inthe case of Theorem 4.1 [@f2] more than one deletion from the frame is not discussed.
Further, it was argued that unit norm tight frames may fail to remain a frame@fter
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N)-erasures. Theorem 4.2 §f2] proves that a class of harmonic frames are robust to
(M — N)-erasures.

In the following, we show that the frames @heorems 6.13 and 6.1%ave similar
properties. Moreover, one can see that the frameEhaforems 6.13 and 6.1&re built
through fractal sets to any abstract Hilbert space of dimenaionhile the frames of
Theorem 4.2 o0f12] are a particular type of frames B andC" .

Theorem 7.5. Let Sy, be the frame oTheorem 6.13S, is robust tocard /)-erasures if
cardl) <M — N and{x1,...,xy_nN}NA, ZOforallm=1,...,N.

Proof. Letcardl) = gandJ = {1, ..., M}, then following the proof ofheorem 6.13ve
can see that the frame operator

F= Y 1)yl

je\I

satisfies the frame condition

A%||@l1? < (9| Fp) < BA(M — @)|1$lI%, Yo € 5.
O

Theorem 7.6. Let S; be the frame oTheorem 6.15S; is robust tocard I)-erasures if
cardl) <L — Nand{y1,...,yL_ny}NA, #@forallm=1,... 6 N.

Proof. A proof follows similar toTheorem 6.13 O
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